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Abstract. The effect of excluded-volume interactions on the reptation dynamics of long polymer chains is
considered theoretically. It is shown that interactions give rise to an exponential increase of the reptation
time, τrep ∼ exp[(N/N∗)2/3], if polymer chains are long enough: N > N∗ ∼ N3e , where Ne is the number
of monomers per entanglement. We propose a novel dynamical mechanism of activated reptation implying
that neighboring chains exchange conformations of their terminal fragments. It is shown that the exchange
mechanism is compatible with the equilibrium polymer chain statistics and that it provides a bridge
between the previous theories.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 83.10.Nn Polymer
dynamics – 83.20.Fk Reptation theories

1 Introduction

Polymer liquids show intriguing dynamical properties
which are of considerable scientific and technological in-
terest [1,2]. In particular, dynamics of linear homopoly-
mers (in a way, the simplest system) attracted significant
theoretical attention in recent years [2–5]. It was recog-
nized that dynamics of melts (and solutions) of very high-
molecular-weight polymers is strongly affected by the en-
tanglements between polymer chains. The most successful
theory that takes into account the effect of entanglements
is based on the reptation model proposed by de Gennes [3]
and further developed by Doi and Edwards [4,5]. The rep-
tation theory assumes that motion of any chosen polymer
chain is strongly restricted by the presence of surround-
ing polymers, which create a sort of a tube around the

chosen chain, the tube diameter being a = N
1/2
e b with b,

the monomer size, and Ne, the number of monomers per
entanglement.

The main large-scale motion of a polymer chain is its
reptation along the tube, which can be viewed as a ran-
dom sequence of forward and backward displacements,
i.e. one-dimensional diffusion along the tube axis. The
reptation theory predicts N3 scaling for both the viscos-
ity η and the (longest) stress relaxation time τstress in
the entangled regime N > Ne (here N is the number
of monomers per chain). This is in reasonable agreement
with the experimental data [1], which however show a bit
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stronger molecular-weight dependence of both quantities1:
η ∝ τstress ∝ N3.4.

The following rather academic question arises in this
regard: what is the asymptotic dependence of η and τstress
on molecular weight in the limit N → ∞. It is this ques-
tion that is considered in the present paper.

The problem received some attention in the past
[6–12]. The main idea (also implemented in the present
work) is that the reptation of extremely long polymers
is additionally hindered by the excluded volume interac-
tions coupled with the fluctuations of the entanglement
network topology, or, in other words, by the fluctuations of
the monomer molecular field. This conclusion was corrob-
orated by the rigorous approach [8,9] treating fluctuations
of molecular field as perturbations.

The effects of the excluded-volume interactions (which
were completely neglected in the original reptation the-
ory [4,5]) give rise to a strong slowing down of the rep-
tation dynamics for N > N∗ ∼ N3e [8–11] (a slightly dif-

ferent crossover N∗ ∼ N
11/4
e was originally predicted by

Deutsch [7]): in this region both the relaxation time and
the viscosity grow exponentially with a power of N . The
physical reasons for this behavior are discussed in the next
section.

1 Note that a stronger than N3 apparent dependence of vis-
cosity in a limited, yet experimentally relevant, molecular-
weight range has been predicted as the effect of tube-length
fluctuation modes [13–15].
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Fig. 1. The ‘black’ chain reptates out of the original tube AB
creating a new tube section BB′.

2 Review of the existing theories

We first discuss the main concepts and the results of the
original theory proposed by Deutsch [7]. Let us choose
an arbitrary polymer chain in an entangled polymer melt
(a ‘black’ chain in a melt of identical ‘white’ ones). On
the time scales shorter than the reptation time τrep (i.e.
the time during which the chain moves along its tube a
distance of order of the tube length2) the chain monomers

are restricted to the tube region with diameter a = N
1/2
e b

and length

L =
N

Ne
a·

At equilibrium the conformations and the topological
state (i.e. mutual entanglements) of the white chains in
the vicinity of the tube are adjusted to the presence of the
black chain. This makes the home tube attractive for the
black chain: when the chain tries to reptate out, it enters
a ‘virgin’ region (creates a new section of the tube at its
‘head’) which is not yet adjusted to the black chain; it
also leaves an adjusted tube region at its ‘tail’ (Fig. 1).
The new tube region can not easily accommodate the
‘head’ section of the reptating chain because of the en-
tanglements: the entanglement network becomes locally
stretched in this region. Note that entanglements cannot
relax on the time-scales much shorter than the reptation
time τrep since their life-time is of the order of this rep-
tation time τrep. Therefore it appears that the effective
free energy of the system increases as the black chain rep-
tates out of its home tube, the increase being ∆F ' g∆µ,
where g is the number of monomers that reptate out, and
∆µ is the difference between monomer chemical poten-
tials in the ‘virgin’ region (µ1) and in the home tube (µ0):
∆µ = µ1 − µ0 > 0. The value of ∆µ is determined by
the structure of the entanglement network as discussed in
Section 3 below. It is virtually independent of the chain
length, N . Therefore the black chain has to overcome a
large potential barrier, U = N∆µ, in order to completely
escape out of the home tube, i.e. the black chain is virtu-
ally trapped (localized) in the tube.
Thus the reptation motion turns out to be an activa-

tion process [7], so that, in particular, the reptation time is

2 Note that the reptation theory predicts that reptation time
τrep is of the order of the stress relaxation time τstress.

exponentially large: τrep ∝ exp(U/kBT ). However a differ-
ent way to estimate the activation energy was suggested
in reference [7]. Note that the average distance between
the chain ends is

S ∼ (Nv)1/3

where v is the monomer volume. It was assumed [7] that
the additional (activation) energy of the system can relax
as soon as the spatial size of the escaped portion of the
black chain, r(g), becomes of the order of S. Taking into
account that polymer chains obey Gaussian statistics in
a melt state, r(g) ∼ bg1/2, we get the critical number of
monomers in the escaped fragment:

g ∼ G ≡ N2/3

where we also assumed that v ∼ b3. Hence the activation
barrier Ua ∼ G∆µ = N2/3∆µ. The reptation process is
then considered as a random sequence of jumps with size
of order S. Each jump implies that a new portion of the
tube containing ∼ G black monomers is created near one
of the chain ends. The jump time τ1 is determined by the
activation energy Ua: τ1 ∝ exp (Ua/kBT ). The activation
energy Ua is assumed to relax after each jump.
Unfortunately, the assumption of reference [7], men-

tioned above, does not seem to be correct. The relaxation
of energy Ua implies the relaxation of the entanglement
network structure in the vicinity of the ‘new’ tube part
(around the head fragment, G). The only possible way
to relax this structure is by a tube renewal process [16]
which takes longer than the reptation time, τrep. Obvi-
ously τrep must be much larger than τ1, the time during

which typically G ∼ N2/3 monomers reptate out of the
original (home) tube: during the reptation time τrep the
chain must vacate the whole home tube. Therefore a no-
ticeable relaxation of energy Ua during time τ1 is impos-
sible.
The original theory [7] does not describe what hap-

pens on the time-scales t > τ1. The dynamical picture
was elaborated in more detail in the paper [12]. The sug-
gested dynamical mechanism can be summarized as fol-
lows: On time scales t > τ1 the spatial displacement of
the black chain end, r(g), is larger than S, so that there
are few ends of the other chains in the region r3(g), ex-
plored by the black end. Some of these surrounding chains
also reptate along their tubes leaving empty traces which
are attractive for the black chain. The latter thus follow
one of the empty traces, i.e. reptates along the home tube
of another chain until an intersection with another empty
trace, where the black chain has a choice of directions. The
effective energy of the black chain thus does not increase
any more: the only unfavorable part of its tube of length
∼ G was created at the earlier stage, t < τ1. However,
the problem here is that more and more reptating chains
become simultaneously involved in the process, each ad-
ditional chain increasing the total free energy by ∼ Ua (as
its head must find a way through the unfavorable ‘virgin’
environment at the initial stage). Therefore the activation
barrier must be actually much higher than Ua.
A different treatment of the activated reptation was

suggested in references [8,9]. The new idea was to take



A.N. Semenov and M. Rubinstein: Dynamics of strongly entangled systems 89

into account the randomness of the entanglement network,
i.e. the fact that the molecular field µ1 is random, µ1(r),
rather than completely uniform. The average field 〈µ1〉
is higher than µ0: the virgin environment is on average
less favorable than that of the home tube. On the other
hand fluctuations of the molecular field make this environ-
ment more attractive for the black chain: the chain tends
to move along the regions of lower µ1 (valleys) avoiding
the elevations (mountains). The effective monomer poten-
tial felt by the black chain outside its home tube, µ1,
is thus smaller than the average value 〈µ1〉. It was ar-
gued that this fluctuation effect cancels the difference be-
tween the home tube and the virgin environment, i.e. that
∆µ = µ1 − µ0 = 0. This statement was corroborated by
the perturbation analysis which shows that ∆µ = µ1−µ0
does vanish to the second order in the molecular field fluc-
tuations [8,9]. This picture leads to the barrier which is
due to the fluctuations of the molecular field rather than
the permanent difference between the molecular field near
the home tube and far from it. The resultant barrier, Ua, is
thus proportional to

√
G rather thanG: Ua ∝

√
G ∼ N1/3,

i.e. the effective ∆µ is proportional to 1/
√
G. It is impor-

tant that this smaller energy barrier Ua can relax much
faster than the reptation time: it can certainly relax dur-
ing time τ1

3. This makes the dynamical picture consid-
ered in references [7,12] self-consistent. Unfortunately the
height of the activation barrier Ua was underestimated
in references [8,9]. A careful analysis shows that ∆µ can
not possibly vanish if higher-order effects of the molecular
field fluctuations are taken into account, as was noted in
reference [12] (∆µ is estimated in the next section).
Thus the existing approaches do not provide a consis-

tent picture of polymer motion on time-scales larger than
τ1. The questions remaining to be answered are: What is
the mechanism of polymer motion on these time-scales?
How many chains must be involved in an elementary ac-
tivation process (jump)? What is the effective activation
energy? These questions are answered in the following sec-
tions.

3 The novel mechanism of the activated
reptation

3.1 Reptation through a random medium

When g monomers at the head of the black chain ‘leak
out’ of the home tube, they enter a random entanglement

3 The following relaxation mechanism is possible: Consider
a white chain W with one end in the region S3 explored by
the head of the black chain B during τ1. The typical number
of intersections between the head G-segment of chain B and a
similar segment of chain W is n ∼ G1/2 (this is the number of
contacts between two Gaussian coils of G monomers). During
the time τ1 the W chain can reptate ‘inside’ its tube on a
distance ∼ G thus removing n ∼ G1/2 contacts with the B
chain. The effective energy of the B chain would then decrease
by ∆F ∼ nkBT , leading to a considerable relaxation of the
energy barrier Ua since ∆F ∼ Ua.

network, which is frozen on time-scales smaller than the
reptation time, t < τrep. The random network structure
implies that its stress is random: σe = σe(r). At equi-
librium the average stress is zero. By virtue of the melt
incompressibility, the incoming black fragment causes ad-
ditional deformation of the network, ∆ε. The excess elastic
free energy F (g) is proportional to the local stress. Hence
F (g) fluctuates as the head fragment moves from a more
stressed to a less stressed region. A typical value of the
excess elastic free energy is

F (g) =

∫
σe(r)∆ε(r)d

3r = σ̄e

∫
∆ε(r)d3r = σ̄egv

where gv is the intrinsic volume of the fragment, and σ̄e is
the network stress averaged over the volume V (g) explored
by the fragment4. The elastic energy corresponding to a

particular σ̄e can be estimated as W (σ̄e) ∼ V
σ̄2e
Ke
, where

V = V (g) is the relevant volume, and Ke is the longitu-
dinal elastic modulus of the entanglement network. It is
natural to expect thatKe is of the order of the shear elastic
modulus, Ke ∼

kBT
vNe
. Fluctuations of the stress must obey

the Boltzmann statistics since the system is at equilib-
rium. Therefore W (σ̄e) ∼ kBT , i.e. δσ̄e ∼ (kBTKe/V )1/2.
Taking into account that the volume explored by the frag-
ment V ∼ r(g)3 ∼ b3g3/2, we get the typical fluctuation
of the free energy of the fragment:

δF (g) ∼ gvδσ̄e ∼
g1/4

Ne
1/2
kBT ∼ (g/g

∗)1/4kBT

where g∗ ≈ N2e and we also took into account that v ∼ b
3.

If the segment is short g � g∗ then the effect of the
random field is weak: δF � kBT , so that the penetrat-
ing segment of the chain explores the whole volume V (g)
determined by its Gaussian size. In the opposite regime,
g � g∗, the segment’s conformation is localized in the re-
gions of lower molecular field (lower frozen stress). In this
case the segment can be considered as a sequence of local-
ization blobs, g∗, each blob being virtually trapped in a
favorable region. The free energy per one localization blob
is of order of −kBT . The total free energy of penetration
is then F (g) ' −kBTν

g
g∗
, where the reduction factor ν

(smaller than unity) takes into account that the favorable
network regions, where the blobs, g∗, tend to be localized,
do not always form a continuous sequence: sometimes they
are separated by less favorable regions. On the other hand
the home (equilibrium) tube is a continuous sequence of
the favorable regions, i.e. the free energy of the segment in
its home tube is F0(g) ' −

g
g∗
kBT . Therefore the effective

difference of the chemical potentials is

∆µ =
F (g)− F0(g)

g
∼
kBT

g∗
=
kBT

N2e
· (1)

The same result can be obtained by considering a chain
fragment that follows a trace of another chain, i.e. a va-
cated tube. Deutsch [7] demonstrated that the fragment

4 For simplicity we neglect here the tensorial character of the
stress.
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is attracted to the trace and is adsorbed on it. Using
the arguments similar to those presented above one can
show that the adsorption energy per monomer is exactly
∆µ (Eq. (1)). Note that the adsorption energy obtained
by Deutsch is a bit different: his ∆µ is proportional to

N
−11/6
e . The reason for the difference in the exponents
is that the scaling result for adsorption from a good sol-
vent was used in [7]. The result of reference [7] becomes
identical to equation (1) when corrected for the Gaussian
statistics of chains in a melt.
When the reptating fragment interacts with a trace,

it follows it with the precision of order of the localization
blob size:

Λ ≈ b (g∗)1/2 ≈ bNe. (2)

The same localization length was obtained in reference
[12]; the same scale was also derived earlier [8,9] using the
perturbation approach.

3.2 Fluctuations of tube length

Let us consider again the ‘black’ chain which must be
trapped for a long time in its home tube (as discussed
above). Naturally, the total tube length occupied by the
chain does not remain constant, but rather fluctuates.
The equilibrium fluctuations were originally considered by
Doi [13]: the excess free energy corresponding to ∆L =
L− L̄, where L̄ is the average tube length, is

E(∆L) ≈
kBT

2

(∆L)2

Nb2
· (3)

Therefore the amplitude of the typical fluctuations is
∆L ≈ bN1/2.
The equilibrium result, equation (3), is not relevant,

however, to the tube length fluctuations for a given chain
while it is trapped in the corresponding home tube. An
increase of the total tube length implies that a number
(g) of head monomers has created a new tube part (∆Lh)
in the unfavorable (‘virgin’) environment. Therefore the
free energy increases by E(∆Lh) ∼ kBTg/g∗. If, on the
contrary, the tube length decreases by ∆Lh, then the same
number of head monomers vacate the head part of the
home tube moving inside it. The corresponding free energy
increase is the same as in the previous case since g black
monomers moved into the home tube which is already
occupied by other black monomers. Taking into account
that ∆Lh = a

g
Ne
we thus get

E(∆Lh) ∼
|g|

g∗
kBT ∼

kBT

bN
3/2
e

|∆Lh| (4)

if |g| > g∗, i.e. if |∆Lh| > bN
3/2
e .

The typical fluctuation is ∆Lh ∼ bN
3/2
e ; it is indepen-

dent ofN and is much smaller than the equilibrium fluctu-
ation b

√
N if N is large enough, N � N3e . The last state-

ment is not a contradiction: the fluctuation ∆Lh in equa-
tion (4) is the difference between the current tube length

and the home tube length Lh while the chain is trapped
near a given home tube. On the other hand Lh varies from
chain to chain fluctuating around the equilibrium average
L̄. Therefore the total fluctuation is ∆L =∆Lh+(Lh− L̄)
and for large N � N3e the total fluctuation is dominated
by the second term, Lh − L̄.

3.3 Activated reptation with tube-length fluctuations

We suggest the following mechanism of polymer dynamics
for ultra-long chains with

N � N∗ ≡ N3e . (5)

Consider a chain 1, and mark its ends as e1 and e2. Let
us denote the end of another chain (chain 0), which is
the neighbor of the end e1, by e0 (Fig. 2). The distance
between e1 and e0 is of the order of

S ∼ bN1/3

(see Sect. 2), i.e. much smaller than the chain size bN1/2.
The two chains (1 and 0) are then likely to have close
encounters, i.e. some of their monomers are closer to each
other than the attraction distance (the localization length)
Λ, equation (2). The typical number of monomers n1 from
the end e1 to the first close encounter I is of order of
G ≈ N2/3. The same is true for the number of monomers
n0 between e0 and I:

n0 ∼ n1 ∼ G ∼ N
2/3.

Note that here we assume that G� g∗ = N2e (see Eq. (5)).
If both chains simultaneously compress inside their home
tubes vacating the intersection (close encounter) region
(see Fig. 2b), then during the reverse process they will
have a choice to return to their original home tubes, or to
exchange the fragments I−e1 and I−e0 (see Fig. 2c). In the
latter case the conformations of both chains would change.
The activation energy for this process is E1 ≈ kBT

n0+n1
g∗ .

The tube lengths of the chains also change as a result of
the exchange process. For example, if n1 > n0, then the
chain 1 would have to occupy a shorter tube of length

smaller than the equilibrium one by a (n1−n0)
Ne

. Thus the
free energy of the final state is higher than the initial free
energy by

∆E ≈ kBT
n1 − n0
g∗

·

As for the other chain 0, it enjoys being in a tube longer

than it needs by the same length a (n1−n0)
Ne

; thus this chain
can freely move along the new tube to some extent.
The system now has to find a way to relax the ad-

ditional energy ∆E since the free energy at the end of
an elementary activation step must be equal to the initial
free energy (otherwise the total activation energy would
increase after each step up to infinity). One possibility for
the compressed chain 1 to relax is to do an exchange of its
terminal tube section n2 near its other end e2 with chain
2 having one of its ends, marked as e3, in the vicinity of
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(a)

(b)

(c)

Fig. 2. The tail exchange mechanism of the activated repta-
tion. (a) Two chains “0” and “1” with neighboring ends e0
and e1 intersect at the point I. The terminal tube parts I− e0
and I−e1 contain n0 and n1 segments respectively. (b) Both
chains are compressed so that the terminal parts of their tubes
are vacated. (c) The chains decompress following new terminal
paths.

Fig. 3. The second end e2 of chain “1” is close to the end e3
of another chain “2” (e3−e4); the distance between the ends is
of order of S ∼ (Nv)1/3. Inset at the bottom: close encounters
between terminal fragments of chains “1” and “2” are marked
by black circles; the typical number N of these encounters is
proportional to S.

the end e2, i.e. to exchange n2 to n3 (see Fig. 3). A com-
plete relaxation of chain 1 implies that its tube length
returns to its equilibrium value after these two exchanges,
i.e. that

| (n3 − n2)− (n1 − n0)| < g
∗. (6)

It is unlikely that this condition is satisfied for the first
close encounter between the chains 1 and 2. Fortunately,
any close encounter (intersection) between two Gaussian
chains is typically supplemented by a large number of ad-
ditional intersections. By a close encounter between two
chains we mean that their monomers are getting within
distance Λ of each other (see Eq. (2)). The typical num-
ber N of close encounters between n2 and n3 terminal
fragments (see inset in Fig. 3) is of order G1/2, where

G ∼ G/g∗ ∼ N2/3/N2e (7)
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is the typical number of localization blobs (g∗) per frag-
ment (n2 ∼ n3 ∼ G). Thus if both chains simultaneously
compress into their tubes by pulling in ∼ Gg∗ monomers,
there are N ∼ G1/2 close encounters between their home
tubes vacated in the process. This pair of chains would
have a choice of 2 different trajectories at each intersec-
tion during the reverse process, i.e. the total number of
different trajectories is 2N . Hence a choice of 2N differ-
ent values of (n3 − n2) /g∗. These values are distributed
within a limited range, since |n3 − n2| can not exceed the
total number of monomers n2+n3 of both pulled-in chain
sections, which is of order G ∼ N2/3. A continuous dis-
tribution of the values of (n3 − n2) /g∗ imply that any
number within the specified range can be approximated
by a value from this set with an exponentially small er-
ror since 2N � G ∼ N 2. Thus the condition 6 can be
satisfied by choosing the appropriate trajectory if the dif-
ference (n1 − n0) /g∗ is not too large, which is normally
the case (otherwise the chains would have to compress a
bit more). The maximum activation energy at this stage,
E2, is still of order GkBT ≈ kBTN2/3/N2e .
The activation step is still not finished at this stage

since the extra free energy was just transmitted from chain
1 (which is now relaxed) to chain 2 which is now com-
pressed. However the process described above can con-
tinue: an exchange with another chain 3 can occur at the
opposite end e4 of chain 2, and so on. Obviously the pro-
cess should terminate as soon as chain 0 is involved again
in the exchange: in this case all the tube lengths of all the
involved chains return to their initial equilibrium values.
In other words, the process (elementary activation step)
is finished when a closed loop of exchanges is formed.
Let us estimate the number ω of exchanges in a typical

shortest loop. Note that every next exchange occurs at
the opposite end of the current compressed chain, i.e. the
exchange region jumps every time by the chain end-to-end
distance R ∼ bN1/2. At any stage the current (ith) chain
has a choice of a few neighbors. By neighbors we mean
chains with an end within distance S ≈ bN1/3 of the end
of the i th chain to enable the exchange of tube sections,
as described above. Let us consider a spherical region of
radius ∼ R including the chains 0, 1, 2, and 3. Let us allow
further exchanges only with those neighbors whose both
ends are inside the region. There is still typically a choice
of a few (say, 2) such neighbors suitable for an exchange at
each stage. The number of different chains involved in the
sequence of i exchanges thus grow as 2i (of course, the base
2 is just an example). The total number of chains in the
spherical region is of the order of R3/(Nv) ∼ N1/2. Thus
the loop of exchanges would close as soon as 2i ∼ N1/2

and chain 0 participates again so that the extra stress
finally relaxes. Therefore the typical number of exchanges
is ω = i ∼ lnN .
The overall activation energy can be estimated as

Ua ∼ max
i
(Ei) + ωkBT (8)

where Ei is the activation barrier for the ith exchange,
Ei ∼ GkBT . The second term, ωkBT , takes into account
that the exchanges are not random, but rather at any stage

i a particular neighbor is chosen in order to create the
shortest loop. Obviously the second term in equation (8)
is negligible in comparison with the first one, so that5

Ua ≈ GkBT ≈ kBTN
2/3/N2e . (9)

Thus the elementary activation step is the loop of ω ∼
lnN exchanges between terminal sections of the chain tra-
jectories. The time of one activation step is

τ1 ∝ exp (Ua/kBT ) ' exp
(
constN2/3/N2e

)
(10)

where we have ignored the pre-exponential factors. This
result is similar to that obtained by Deutsch [7], except

that N
11/6
e is replaced by N2e in equation (10).

During the elementary step the chain 1 (and all other
chains involved in the loop) moves along the tube by a
distance of order aN2/3/Ne in a random direction (i.e.
backward or forward). The overall reptation time τrep by
definition corresponds to the displacement along the tube
on a distance of order of the total tube length, i.e. L =
aN/Ne. Therefore

τrep ∼

(
N/Ne

N2/3/Ne

)2
τ1 ∼ N

2/3τ1. (11)

4 Discussion and conclusions

In this paper we have demonstrated that the large-scale
motion of entangled polymer chains is significantly slowed
down by the excluded-volume interactions if the chains
are long enough: N > N∗ = N3e . In this case the poly-
mer reptation motion can be considered as a sequence of
activation steps. During each step the chain end moves in
space by the distance of order S ∼ bN1/3, which is compa-
rable with the distance between neighboring chain ends.
The typical time of one step, τ1, is exponentially long, see
equation (10). This time, τ1, determines both the viscosity
η ∝ τstress ∝ τ1 and the macromolecular diffusion constant
D ∝ 1/τ1.
The presented theoretical picture is similar to that pro-

posed by Deutsch [6,7]. The main new points are:
(1) The activation barrier, Ua, is treated more accu-

rately. The result, equations (9), is now in agreement with
the prediction based on the exact perturbation approach
[8,9] that a significant slowing down of the dynamics starts
at N ∼ N∗ = N3e , i.e. in the region where the present the-
ory predicts a barrier of order kBT .
(2) A new dynamical mechanism of activated repta-

tion is proposed, namely, the tail exchange mechanism,
which implies that at each step two or more chains ex-
change the tail parts of their tubes. It is explicitly shown
that this mechanism is compatible with the equilibrium

5 A more careful analysis taking into account fluctuations
of Ei leads to the following estimate: Ua ∼ (lnω)

2/3 GkBT .

However the additional (lnω)2/3 ' (ln lnN)2/3 is always of
order unity, unless N is astronomically large.
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polymer statistics, and in particular does not imply any
accumulation of the free energy. The tail exchange mech-
anism replaces the dynamical picture of Deutsch [7,12]
which implies that at each step the leading chain part has
to penetrate through unfavorable regions leading to the
free energy accumulation.

We also proposed that each activation step is actually
a closed loop of exchanges between different chains lead-
ing to a complete relaxation of the activation energy. The
qualitative idea of the cooperative reptation along closed
cycles involving many chains was suggested earlier [17].
Pakula [18] proposed a model for numerical simulation
of reptation dynamics in dense polymer systems which is
based on the same idea of closed loops.

Any activation step implies that some chains tempor-
arily occupy the tubes which are a bit too short (or too
long) for them. The corresponding defects can be charac-
terized by the difference between the current tube length
and the equilibrium tube length, ∆L = L − L̄. The dy-
namics can be also interpreted in terms of these defects:
in particular the loop of exchanges can be considered as
a sequence of jumps of a +∆L defect from one chain to
another until it annihilates with a −∆L defect created by
the initial exchange. It is possible that the real polymer
dynamics is even more complicated. For example a defect
once created by a thermal fluctuation might then ‘diffuse’
from chain to chain until it meets another one of the op-
posite sign. The defect might also split into two parts,
∆L = ∆L1 +∆L2, at some point. Two new defects could
then either combine back to create the priming one, or dif-
fuse apart. When a defect jumps onto a chosen chain, and
then further to its neighbor, the chain makes a reptation
step. This dynamical picture, although formally different
from the one presented in the previous section, implies the
same scaling for the activation barrier, which must still be
defined by equation (9).

One more complication arises from the fact that the
system is not completely homogeneous. The current bar-
rier Ui which determines the time of each elementary step
(by a distance ∼ S) strongly depends on the local en-
vironment of the ‘active’ chain end (i.e. the end which is
going to make an exchange with another chain): the larger
is the distance of its end to the closest end of the neigh-
boring chains, the higher is the barrier. When the chain
reptates along the tube its energy passes over different
barriers Ui because of fluctuations of the local concentra-
tion of surrounding chain ends. The typical fluctuation is
large δUi ∼ Ui ∼ GkBT � kBT . It is the largest barrier
Ua = maxi Ui that determines the overall reptation time
since the chain must overcome all the barriers in order to
considerably change its conformation. The number of dif-
ferent barriers is nearly equal to the number of G-blobs
per chain, nG = N/G ∼ N1/3 (this number is also equal
to the number of neighboring chain ends in the vicinity of
the given tube). The typical largest barrier Ua = maxi Ui
among N1/3 barriers the chain must go over in order to
reptate out of its tube can be estimated as follows.

Each individual barrier is proportional to the num-
ber of g∗-blobs per tail chain fragment with Gaussian

size equal to the distance Si to the nearest chain end:
Ui ∼ kBTS2i /(b

2g∗). Therefore the probability P (u) that
the barrier Ui exceeds an arbitrary level kBTu (u� G) is
roughly equal to the probability that the distance to the
nearest end Si is larger than s = b

√
g∗u= Λ

√
u = bNe

√
u,

i.e. that a spherical region of radius s (around the current
tube part) is free of polymer chain ends. The latter prob-
ability is6 P = exp (−ceV (s)), where V (s) ∼ s3 is the vol-
ume of the spherical region, and ce = 2/(Nv) ∼ 1/(Nb3)
is the average concentration of chain ends. Hence

P (u) ∼ exp
(
−const (u/G)3/2

)

where G = N2/3/N2e is defined in equation (9). Obviously
the typical maximum barrier Ua = maxi Ui, i = 1, 2...nG,
is roughly determined by the condition P (Ua) ∼ 1/nG
(here we assume that the barriers Ui are distributed inde-
pendently), i.e.

Ua

kBT
∼ G(lnnG)

2/3 ∼

(
N

N∗
lnN

)2/3
· (12)

Equation (12) differs from the previously obtained equa-

tion (9) by a logarithmic factor (lnN)
2/3
which is hardly

important as its molecular weight dependence is very weak.
Finally we note that the activated reptation dynam-

ics is reminiscent of the dynamics near a glass transition.
However we should consider N dependence of the dynami-
cal quantities instead of temperature dependence (i.e. 1/N
instead of T − Tg). In particular, the idea of closed cycles
of cooperative elementary motions (the cycles increase in
size near glass transition) was also considered with regards
to the glass transition dynamics [19,20].
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